Sensitivity Analysis in Markov Networks
نویسندگان
چکیده
This paper explores the topic of sensitivity analysis in Markov networks, by tackling questions similar to those arising in the context of Bayesian networks: the tuning of parameters to satisfy query constraints, and the bounding of query changes when perturbing network parameters. Even though the distribution induced by a Markov network corresponds to ratios of multi-linear functions, whereas the distribution induced by a Bayesian network corresponds to multi-linear functions, the results we obtain for Markov networks are as effective computationally as those obtained for Bayesian networks. This similarity is due to the fact that conditional probabilities have the same functional form in both Bayesian and Markov networks, which turns out to be the more influential factor. The major difference we found, however, is in how changes in parameter values should be quantified, as such parameters are interpreted differently in Bayesian networks and Markov networks.
منابع مشابه
Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملExpected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملSensitivity Analysis of Continuous Time Bayesian Network Reliability Models
We show how to perform sensitivity analysis on continuous time Bayesian networks (CTBNs) as applied specifically to reliability models. Sensitivity analysis of these models can be used, for example, to measure how uncertainty in the failure rates impact the reliability of the modeled system. The CTBN can be thought of as a type of factored Markov process that separates a system into a set of in...
متن کامل